Über p-Cymol und seine Derivate. 381)

Die thermodynamischen Eigenschaften des p-Cymol

Von Wolfgang Strubell

Inhaltsübersicht

Die thermodynamischen Daten des p-Cymol wurden nach der Literatur kritisch ausgewertet und zum Teil neu berechnet.

Zustand

Der Schmelzpunkt des p-Cymols liegt bei -73,5°C, sein normaler Siedepunkt bei 176,7°C. Im Normalzustand (0°C u. 760 mm) ist p-Cymol also flüssig.

Tabelle 1
Dampfdruck und Siedepunkt von p-Cymol²)

Druck p mm	Siedetemperatur °C	Druck p mm	Siedetemperatur °C
800	178,85	50	91,4
760	176,7	40	85,8
700	173,48	30	78,95
600	166,5	20	70,3
500	158,6	15	64,3
400	150,3	10	56,9
300	140,0	8	52,8
200	127,8	6	47,65
100	109,5	5	44,6
60	95,8	4	40,8

Dichte

Die Dichte des p-Cymol im festen Zustand ist nicht bekannt. Für den flüssigen Zustand wurde sie vom Verfasser pyknometrisch bestimmt.

Die Dichte des p-Cymol im idealen Gaszustand ist in Tabelle 3 angegeben.

¹⁾ W. STRUBELL, 37. Mitteilung, J. prakt. Chemie, [4] 21, 184 (1963).

²) C. v. Rechenberg, Einfache und fraktionierte Destillation in Theorie u. Praxis, Leipzig 1923, Seite 249.

Kritische Daten

Tabelle 2 Dichte ϱ fl. von flüssigem p-Cymol. (Werte reduziert auf 1,033 at)

Temperatur °C	Dichte g/cm³	Temperatur °C	$\begin{array}{c} \text{Dichte} \\ \text{g/cm}^3 \end{array}$
0	0,8732	100	0,7888
4	0,8701	11 0	0,7805
8	0,8670	120	0,7718
10	0,8654	130	0,7635
15	0,8619	140	0,7550
20	0,8571	150	0,7466
35	0,8435	160	0,7361
50	0,8310	170	0,7299
80	0,8000	176	0,7251

Tabelle 3

Dichte von p-Cymol im idealen Gaszustand

Temperatur	$\begin{array}{c} {\rm Dichte} \\ {\rm g/cm^3} \end{array}$	Temperatur	Dichte
°C		°C	g/cm³
200 300 400 500	0,0334 0,0276 0,0234 0,0204	600 700 800	0,0181 0,0162 0,0147

Nach K. A. Kobe u. R. E. Lynn³) haben die kritischen Daten die folgenden Werte:

kritische Temperatur $t_{krit}=378,1^{\circ}\text{C},$ $T_{krit}=651,4^{\circ}\text{K}$ kritischer Druck $p_{krit}=27,53$ at
kritische Dichte $\rho_{krit}=0,266.$

Spezifische Wärme

Die spezifische Wärme des p-Cymol wurde für den flüssigen und den idealen Gaszustand berechnet. Für die Berechnung der wahren spezifischen Wärme von Flüssigkeiten fanden Chow und Bright⁴) folgende Formel:

$$e_{p}(T_{2}) = e_{p}(T_{1}) \cdot \frac{y(T_{red_{2}})}{y(T_{red_{1}})}$$

Bekannt ist von p-Cymol die wahre spezifische Wärme bei 25 °C; $c_{\rm p}=0.422$ [kcal/kg grd].

$$\begin{split} c_p(T_1) &= 0,422\\ \text{und } c_p(T_2) &= 0,422 \cdot \frac{y_2}{y_1} \text{und } y_1 = 2,61.\\ c_p(T_2) &= 0,422 \cdot \frac{y_2}{2.61} = 0,126 \, y_2. \end{split}$$

Für den idealen Gaszustand wurde die wahre spezifische Wärme nach dem Verfahren von B. Jacobi⁵) berechnet und zwar als Summe der äußeren und inneren Bewegungsenergie nach der Bindungsfrequenzmethode. Die Gleichung lautet:

$$\label{eq:continuous} {\rm C_p = -2.940 \, + \, 150.396 \cdot 10^{-3} \, T \, -26.213 \cdot 10^{-6} T^2 \, [keal/kmol \, grd]}.$$

Durch Integration der Gleichung für die wahre spezifische Wärme zwischen den Temperaturen $\mathbf{T_1}$ und $\mathbf{T_2}$ ergibt sich die Gleichung der mittleren spezifischen Wärme:

$$\mathbf{C_{p_m}} = \frac{1}{\mathbf{T_2} - \mathbf{T_1}} \left[+2,940 \left(\mathbf{T_1} - \mathbf{T_2} \right) + 75,198 \cdot 10^{-3} \left(\mathbf{T_2^s} - \mathbf{T_1^s} \right) + 8,738 \cdot 10^{-6} \cdot \left(\mathbf{T_1^s} - \mathbf{T_2^s} \right) \right] \\ \text{[keal/kmol grd]}.$$

Enthalpie

Aus der mittleren spezifischen Wärme oder nach Franklin⁶) und Souders⁷) aus der Strukturformel läßt sich die Enthalpie berechnen.

³⁾ K. A. Kobe u. R. E. Lynn, Chem. Rev. 52, 220 (1953).

⁴⁾ W. M. Chow u. J. A. Bright, Chem. Engng. Progr. 49, 175 (1953).

⁵⁾ B. JACOBI, Wissensch. Zeitschr. d. TH Dresden 10, 327 (1961).

⁶⁾ J. L. Franklin, Ind. Engng. Chem. 41, 1070 (1949).

⁷⁾ M. SOUDERS, Ind. Engng. Chem. 41, 1037 (1949).

Tabelle 4 Wahre spezifische Wärme [kcal/kg grd] von flüssigem p-Cymol

t °C	T °K	T _{red} °K	У2	e _p kcal kg grd
0	273	0,419	2,52	0,408
10	283	0,434	2,58	0,417
20	293	0,450	2,61	0,421
40	313	0,481	2,68	0,434
60	333	0,512	2,74	0,444
80	353	0,542	2,80	0,456
100	373	0,573	2,89	0,468
120	393	0,588	2,92	0,473
14 0	413	0,634	3,08	0,499
160	433	0,664	3,18	0,515
170	443	0,679	3,26	0,527

Tabelle 5 Wahre spezifische Wärme von p-Cymol im idealen Gaszustand

Temperatur °K	Wahre spezifische Wärme kcal/kmol grd	Wahre spezifische Wärme kcal/kg grd
298	40,550	0,303
400	55,024	0,411
500	65,705	0,490
600	78,311	0,584
700	89,493	0,668
800	100,601	0,751
900	111,183	0,830
1000	121,243	0,905
1100	130,578	0,974
1200	139,788	1,041
1500	169,455	1,265

Tabelle 6
Enthalpie von p-Cymol

Temperatur °K	Enthalpie keal/kmol	Temperatur °K	Enthalpie keal/kmol
0	0	800	40,85
298	6,55	1000	59,75
400	11,44	1200	80,40
500	17,43	1500	113,69
600	24,41		

Heizwerte

Für die Heizwerte liegen Angaben von Dubowkin⁸) vor:

Tabelle 7 Heizwerte von p-Cymol

	kcal/kmol	kcal/kg
Oberer Heizwert Unterer Heizwert	$\frac{1411950}{1339529}$	10530 9982

Verdampfungswärme

Die Verdampfungswärme des p-Cymols wurde nach Watson⁹) berechnet.

Tabelle 8 Verdampfungswärme des p-Cymols bei 1,033 at

Temperatur °C	Verdampfungs- wärme kcal/kg	
0	90,61	
20	89,54	
50	86,72	
100	80,91	
150	76,3	
176,7	67,7	

Wärmeleitfähigkeit

Die Wärmeleitfähigkeit von flüssigem p-Cymol läßt sich näherungsweise nach Weber¹o) berechnen. Sie liegt im Temperaturbereich von 0—160°C zwischen 0,1806 und 0,1780 kcal/mh grd].

Zähigkeit

Die dynamische Zähigkeit von flüssigem p-Cymol wurde nach Souders 11) berechnet.

⁸⁾ J. F. Dubowkin, Handbuch über kohlenwasserstoffhaltige Brennstoffe und ihre Verbrennungsprodukte, Moskau 1962, Seite 169.

⁹⁾ K. M. WATSON, Ind. Engng. Chem. 23, 360 (1931).

¹⁶) H. F. Weber, Sitzungsbericht Preuß. Akad. Wissensch. 1885, S. 809.

¹¹) M. Souders, J. Amer. chem. Soc. 60, 154 (1938).

Tabelle 9 Dynamische Zähigkeit von flüssigem p-Cymol

Temperatur °C	Zähigkeit c P	Temperatur °C	Zähigkeit c P
0	8,634	80	0,684
10	5,968	100	0,627
20	3,402	120	0,550
30	1,600	140	0,481
40	0,933	160	0,421
60	0,836	175	0,379

Leipzig, Forschungslabor des ehemaligen VEB Dentalchemie¹²).

Bei der Redaktion eingegangen am 18. Oktober 1963.

¹²) Neue Anschrift: Leipzig O 5, Hermann-Liebmann-Str. 19